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Perspectives

The evolutionary continuum from lung development to homeostasis and repair

J. S. Torday1,2 and V. K. Rehan1

Departments of 1Pediatrics and 2Obstetrics and Gynecology, Los Angeles Biomedical
Research Institute at Harbor-UCLA Medical Center, Torrance, California

Torday JS, Rehan VK. The evolutionary continuum from lung
development to homeostasis and repair. Am J Physiol Lung Cell Mol
Physiol 292: L608–L611, 2007. First published November 3, 2006;
doi:10.1152/ajplung.00379.2006.—A functional, developmental, and
comparative biological approach is probably the most effective way
for arranging gene regulatory networks (GRNs) in their biological
contexts. Evolutionary developmental biology allows comparison of
GRNs during development across phyla. For lung evolution, the
parathyroid hormone-related protein (PTHrP) GRN exemplifies a
continuum from ontogeny to phylogeny, homeostasis, and repair.
PTHrP signaling between the lung endoderm and mesoderm stimu-
lates lipofibroblast differentiation by downregulating the myofibro-
blast Wnt signaling pathway and upregulating the protein kinase
A-dependent cAMP signaling pathway, inducing the lipofibroblast
phenotype. Leptin secreted by the lipofibroblast, in turn, binds to its
receptor on the alveolar type II cell, stimulating surfactant synthesis to
ensure alveolar homeostasis. Failure of the PTHrP/PTHrP receptor
signaling mechanism causes transdifferentiation of lipofibroblasts to
myofibroblasts, which are the hallmark for lung fibrosis. We have
shown that by targeting peroxisome proliferator-activated receptor �,
the downstream target for lipofibroblast PTHrP signaling, we can
prevent lung fibrosis. We speculate that the recapitulation of the
myofibroblast phenotype during transdifferentiation is consistent with
lung injury as lung evolution in reverse. Repair recapitulates ontogeny
because it is programmed to express the cross talk between epithelium
and mesoderm through evolution. This model demonstrates how
epithelial-mesenchymal cross talk, when seen as a recapitulation of
ontogeny and phylogeny (in both a forward and reverse direction),
predicts novel, effective diagnostic and therapeutic targets.

Evo-Devo; alveoli; parathyroid hormone-related protein; peroxisome
proliferator-activated receptor �; Wnt

PUBLICATION OF THE HUMAN GENOME has ushered in the “Golden
Age” of biomedical research. But we lack an effective algo-
rithm for arranging gene regulatory networks in a biological
context (35), one which, like the periodic table of the elements,
would predict the functions of genes, unlike interactomes that
merely annotate gene and protein associations. Contemporary
biology mirrors what happened in physics at the turn of the
20th century. We now have the genetic “elements” of the
periodic table, and the Cambrian Burst is analogous to the Big
Bang, so we should now consider the “initial conditions” for
lung evolution and the “continuing strategy” for surviving the
Permian extinction rather than continuing to reason backwards
from phenotypes to genes (42). But we don’t have the biolog-
ical analog of quantum mechanics. Statistical analysis of com-
plex genomic databases, i.e., Systems Biology, will not achieve
that goal because evolution did not occur by chance. Therefore,
a functional genomic approach would seem like the most
effective way of determining the first principles of physiology,
and to do so across phyla as a developmental comparative

approach would be in keeping with the Evo-Devo approach
now being used in evolutionary studies (13). Dobzhansky said
that evolution is all of biology.

There has been a great renaissance in the field of evolutionary
biology with the reemergence of developmental biology. By
comparing gene regulatory networks across phyla and during
development, the sequence of events by which structures and their
functions evolved can be approximated. In a recent publication,
we have shown how the lung may have evolved from the swim
bladder of fish based on the parathyroid hormone-related protein
(PTHrP) signaling pathway, a pathway necessary for both lung
homeostasis and development. PTHrP signaling predicts the mag-
nitude and direction of lung maturation (47) and may also predict
the phylogenetic changes in the vertebrate lung, decreasing alve-
olar diameter (25–27), accompanied by the thinning (30) and
strengthening (24) of the alveolar wall.

PTHrP is expressed throughout vertebrate phylogeny, begin-
ning with its expression in the fish swim bladder as an adap-
tation to gravity; microgravity downregulates the expression of
PTHrP by alveolar type II cells and by the bones of rats
exposed to 0 g (54), suggesting that PTHrP signaling has
evolved in adaptation to 1 g. PTHrP signaling is upregulated by
stretching alveolar type II cells and interstitial fibroblasts (48),
whereas overdistension downregulates PTHrP and PTHrP re-
ceptor expression (52), further suggesting an evolutionary
adaptation. Both surfactant homeostasis and alveolar capillary
perfusion are under PTHrP control, indicating that alveolariza-
tion and ventilation/perfusion matching may have evolved
under the influence of PTHrP signaling.

PTHrP is a highly evolutionarily conserved, stretch-regu-
lated gene that is unusual among the paracrine growth factors
that have been identified to mediate lung development because
1) the PTHrP knockout is stage specific and results in failed
alveolarization, 2) unlike other such growth factors, PTHrP is
expressed in the endoderm and binds to the mesoderm, and 3)
only PTHrP has been shown to act pleiotropically to integrate
surfactant synthesis and alveolar capillary perfusion, i.e., alve-
olar homeostasis. In contrast to this, others have focused on the
importance of the epithelial-mesenchymal trophic unit (11) and
on the importance of the fibroblasts of the “scaffold” that act as
“sentinels” to regulate local inflammatory responses (5). How-
ever, PTHrP signaling from the epithelium to the mesoderm is
highly significant. The earliest developmental signals emanate
from the endoderm (14), and we have demonstrated the depen-
dence of the fibroblast phenotype on epithelially derived
PTHrP for development, homeostasis, and repair. All of these
features of PTHrP biology justify its use as an archetype for
our proposed model of lung evolution. We have schematized
this integrated approach for lung developmental and compar-
ative biology, homeostasis, and repair (Fig. 1).
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Ontogeny and Homeostasis

Stimulation of PTHrP and its receptor by alveolar wall
distension coordinately increases surfactant production (48)
and alveolar capillary blood flow, referred to as ventilation/
perfusion (V/Q) matching. V/Q matching is the net result of the
evolutionary integration of cell/molecular interactions by
which the lung and pulmonary vasculature have functionally
adapted to the progressive increase in metabolic demand for
oxygen (25–27). The structural adaptation for gas exchange is
threefold: 1) the decrease in alveolar diameter (7), 2) the
thinning of the alveolar wall (30), and 3) the maximal increase
in total surface area (6, 59). These structural adaptations could
have resulted from the phylogenetic amplification of the
PTHrP signaling pathway. PTHrP signaling through its recep-
tor is coordinately stimulated by stretching the alveolar paren-
chyma (48). Binding of PTHrP to its receptor activates the
cAMP-dependent protein kinase A signaling pathway (40).
Stimulation of this signaling pathway results in the differenti-
ation of the alveolar interstitial lipofibroblast, characterized by
increased expression of adipocyte differentiation related pro-
tein (ADRP) and leptin. ADRP is necessary for the trafficking
of substrate for surfactant production (43), and leptin stimu-
lates the differentiation of the alveolar type II cell (50). PTHrP
affects the cellular composition of the alveolar interstitium
in at least three ways: 1) it inhibits fibroblast growth (28)
and stimulates apoptosis (36), causing septal thinning, 2)
stimulation of epithelial type II cell differentiation by leptin
(50) can inhibit epithelial cell growth (36), and 3) leptin may
upregulate type IV collagen synthesis (60), reinforcing the
alveolar wall (24).

Ontogeny and Phylogeny

Primordial lung endoderm and mesoderm differentiate into
over 40 different cell types. We know a great deal about
growth factor signaling that determines these processes and the
downstream signals that alter nuclear read-out. And because a
great deal of effort has been put into understanding the conse-

quences of preterm birth, we also know how these mechanisms
lead to homeostasis, or fail to do so, in which case the
phenotype for chronic lung disease informs us of the mecha-
nism of lung fibrosis.

Embryonic lung development is subdivided into branching
morphogenesis and alveolarization, the latter being plastic
(58). Deleting the PTHrP gene results in failed alveolarization
(41), inferring relevance of PTHrP to lung evolution, since
alveolarization is the mechanism for vertebrate lung evolution
(23, 25). Because PTHrP and its receptor are highly conserved
(9) and stretch regulated (48, 53), linking the endoderm and
mesoderm to the vasculature (19), we are compelled to inves-
tigate its overall role in lung phylogeny and evolution.

The combined effects of 1–3 in the previous section would lead
to natural selection for progressive, concomitant decreases in both
alveolar diameter and alveolar wall thickness through ontogeny
(33) and phylogeny (7, 23, 30), increasing the surface area-to-
volume ratio of the lung. PTHrP turns off myofibroblast differ-
entiation by inhibiting Gli (20), the first molecular step in the
mesodermal Wingless/int (Wnt) pathway, and by inactivating
�-catenin (15), followed by activation of LEF-1/TCP, C/EBP�,
and peroxisome proliferator-activated receptor � (PPAR�). The
downstream targets for PPAR� are adipogenic regulatory genes
such as ADRP and leptin. PTHrP induces the lipofibroblast
phenotype, first described by Vaccaro and Brody (55). This cell
type is expressed in the lungs of a wide variety of species (31),
including both newborn and adult humans (37). They are found
next to type II cells in the adepithelial interstitium (12) and are
characterized by neutral lipid inclusions wrapped in ADRP, which
mediates the uptake and trafficking of lipid from the lipofibroblast
to the type II cell for surfactant phospholipid synthesis (43, 46)
and protects the alveolar acinus against oxidant injury (51). The
concomitant inhibitory effect of PTHrP on both fibroblast and
type II cell growth, in combination with PTHrP augmentation of
surfactant production, would have the net effect of distending
and “stenting” the thinning alveolar wall, synergizing with
the upregulation of PTHrP and physiologically stabilizing

Fig. 1. Shown is a schematic of an integrated
approach for lung developmental and compar-
ative biology, homeostasis, and repair.
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what otherwise would result in an unstable structure that
would collapse (34).

Myofibroblast Transdifferentiation as Evolution in Reverse

Lung development prepares the fetus for birth and physio-
logical homeostasis (21). Surfactant production in particular is
crucial for effective gas exchange (2). Based on this functional
linkage between lung development and homeostasis, we have
generated data demonstrating that the underlying mechanisms
of repair may recapitulate ontogeny. If lung fibroblasts are
deprived of PTHrP, their structure changes (52). First, the
PTHrP receptor is downregulated, as are its downstream tar-
gets ADRP and leptin: the decline in the lipofibroblast pheno-
type is mirrored by the gain of the myofibroblast phenotype,
characteristic of fibrosis.

During the process of fetal lung development, the mesoder-
mal fibroblasts are characterized by Wnt/�-catenin signaling
that determines the splanchnic mesodermal fibroblast (44). We
have shown that during alveolarization, the formation of lung
fluid upregulates the PTHrP signaling pathway in the
endoderm, causing the downregulation of the Wnt/�-catenin
pathway (49), leading to the differentiation of the lipofibro-
blast. These cells dominate the alveolar acinus during fetal
lung development but are highly apoptotic in the postnatal lung
(3), giving rise to the alveolar septa (1). Central to this
paracrine determination of the mesodermal cell types is the
failure of the fibroblasts to terminally differentiate (17).

Phylogenetically, the swim bladder and frog lung intersti-
tium are characterized by myofibroblasts; lipofibroblasts don’t
appear until reptiles and mammals (24–27). The recapitulation
of myofibroblasts during lung injury is consistent with the
similarities between lung ontogeny and phylogeny and with the
molecular mechanisms of fibroblast transdifferentiation de-
scribed above, and may, therefore, represent lung evolution in
reverse.

A wide variety of factors can inhibit the normal paracrine
induction of the lipofibroblast and promote myofibroblast pro-
liferation and fibrosis, including prematurity, barotrauma, oxo-
trauma, nicotine, and infection. In all of these instances, injury
of the epithelial type II cell can cause downregulation of
PTHrP (29), causing the mesodermal fibroblasts to default to
the myofibroblast phenotype (52). Myofibroblasts cannot pro-
mote the growth and differentiation of the alveolar type II cell
for alveolarization (52) and produce angiotensin II, which
further damages the type II cell population (57).

The PTHrP receptor is present on the adepithelial fibroblasts
(22). Stretching of the alveolus by fluid or air upregulates both
PTHrP ligand (53) and PTHrP receptor activity (48), promoting
surfactant production by the type II cell, and lipofibroblast neutral
lipid uptake, protecting them against oxidant injury (51). PTHrP
receptor binding stimulates cAMP-dependent protein kinase A
expression, which determines the lipofibroblast phenotype. Treat-
ment of the transdifferentiating myofibroblast either in vitro (52)
or in vivo (39) with PPAR� agonists blocks the transdifferentia-
tion of the myofibroblast, preventing fibrotic injury (39).

The Roles of PPAR� in Ontogeny and Repair

PTHrP induces lipofibroblast differentiation via the protein
kinase A pathway, which blocks Wnt signaling by inhibiting
both Gli and GSK 3�, and upregulates the lipofibroblast

phenotype, PTHrP receptor, ADRP, leptin, triglyceride uptake,
by stimulating PPAR� expression (39, 52).

On the basis of the minimalist idea that development cul-
minates in homeostasis, disruption of homeostasis may lead
back to developmental motifs (10). This occurs in various lung
diseases (4, 8, 16, 56), and by focusing on the continuum from
development to homeostasis, we can select treatments that are
more consistent with promoting cellular reintegration than
stopping inflammation. For example, bronchopulmonary dys-
plasia can be induced by overdistending an otherwise healthy
but immature newborn baboon lung (8). Changing the homeo-
static balance of the alveolus by knocking out surfactant
protein genes B, C, and D leads to alveolar remodeling that is
either grossly flawed (B) or less than optimal (C, D) physio-
logically. Interfering with cell-cell signaling blocks lung de-
velopment (18), usually resulting in parenchymal simplifica-
tion. Conversely, replacing missing developmental elements
can reestablish lung development (44), homeostasis (45), and
structure (30).

Repair recapitulates ontogeny because it is programmed to
express the cross talk between epithelium and mesoderm
through evolution (47). This model is based on three key
principles: 1) the cross talk between epithelium and mesoderm
is necessary for homeostasis, 2) damage to the epithelium
impedes the cross talk, leading to loss of homeostasis and
readaptation through myofibroblast proliferation, and 3) nor-
mal physiology will either be reestablished or cell/tissue re-
modeling/altered lung function may occur, and/or fibrosis will
persist, leading to chronic lung disease. The cell-molecular
injury affecting epithelial-mesenchymal cross talk recapitulates
ontogeny (in reverse), providing effective diagnostic and ther-
apeutic targets.
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